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Abstract –  

This study involves a decision matrix analysis using design expert tool to optimize a set of responses 

(R1 to R5) influenced by five factors (C1 to C5). The initial decision matrix was subjected to analysis, 

and a new decision matrix was predicted. The predicted decision matrix was characterized by a set of 

equations, each representing a response using coded factors. Subsequently, ANOVA tables were 

generated for each response, indicating the significance of the design. The results revealed the 

effectiveness of the design in optimizing the responses, in which few follow cubic or quadratic models, 

while others showed linear behavior. 
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Introduction 

Mathematical models in engineering can make predictions when the concept of prediction is properly 

defined. These models serve as representations of systems or processes, utilizing mathematical 

concepts and language to describe the behavior of entities within the system. Through mathematical 

analysis and computer simulations, insights into the overall system behavior can be gained, allowing 

for predictions about the future state of the modeled system or process. Furthermore, these models 

enable the examination of how predictions change when adjusting or varying the rules that govern the 

entities[6]. 

For predictions within a mathematical model to be relevant, it is crucial that they accurately reflect 

reality. Decision makers acknowledge that all models are simplifications of the real world and that 

assumptions have inherent limitations.  

Design Expert is a valuable tool for design professionals, as it streamlines the decision-making process 

by integrating statistical analysis and experimentation into the design workflow. By leveraging the 

software's capabilities, designers can make more informed and data-driven decisions, leading to 

improved product quality, efficiency, and overall success in their design projects[7, 15]. 

Design Expert[1, 2] is a powerful tool with widespread applications in research, engineering, and 

industry. One of its primary uses is in experimental design, where it allows researchers to plan 

experiments systematically. By providing a range of experimental design options such as Full 

Factorial, Fractional Factorial, Response Surface and Taguchi designs, Design Expert enables the 

exploration of multiple factorsand their interactions. This capability is invaluable for understanding 

complex systems and optimizing processes efficiently[18]. 

One of the standout features of Design Expert is its proficiency in RSM (Response Surface 

Methodology). RSM enables users to create mathematical models that describe how different factors 

influence a process or product. By visualizing these relationships through contour plots, 3D surfaces 
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plots, and other graphical tools, users gain insights that aid in decision-making and process 

improvement[3-5]. 

Design Expert excels in creating mixture design experiments. This feature is particularly useful for 

industries where achieving the optimal combination of components is essential for product 

performance and quality. Additionally, the software supports robust parameter design, allowing for the 

creation of products or processes that are robust against variations in factors, ultimately reducing 

defects and increasing reliability[12]. 

Design Expert also offers a wide array of statistical analysis tools, including ANOVA[11], regression 

analysis, and hypothesis testing. These tools empower users to make informed decisions based on their 

experimental data, enhancing the reliability of their findings. Furthermore, the tool can predict 

outcomes based on established models, which aids in decision-making and reduces the need for 

extensive experimentation. The ability to validate models within Design Expert ensures that the 

mathematical representations accurately depict real-world processes. This validation enhances the 

trustworthiness of the results and decisions derived from the analysis[16]. 

Design Expert is an indispensable tool for researchers, engineers, and professionals in various fields. 

Its multifaceted applications in experimental design, process optimization[10, 14] mathematical 

modeling[17] data analysis, and more make it an asset for enhancing efficiency, product quality, and 

informed decision-making while reducing experimentation time and costs. 

 

PREMILINARIES AND DEFINITIONS 

Definition 2.1: F-Value: 

The F-value is calculated as the ratio of the variance between groups to the variance between and 

within groups. 

The F-value is calculated as F =(Mean Square between Groups)/(Mean Square within Groups) 

If the F-value is significantly greater than 1, it suggests that there is a reasonable association between 

the group means. 

 

Definition 2.2: p-Value: 

The probability of F-statistic as extreme as, or more extreme than the observed values from the sample 

is regarded as p-value, if the null hypothesis is true. The value provides a strong validation on contrary 

to the null hypothesis. 

 

Definition 2.4: Cubic Model in ANOVA:  

A cubic model in Analysis of Variance is a statistical model used to analyze data in which there is a 

non-linear association between the dependent and independent variables. 

The cubic model is mathematically expressed as: 

Y=β_0+β_1 X+β_2 X^2+β_3 X^3+ϵ 

where,  

Y significant the dependent variable under investigation. 

X represents the independent variable, which is the factor being studied. 

β_0,β_1,β_2 andβ_3 are the coefficients that need to be estimated through the ANOVA analysis. 

ϵ accounts for the error term, encompassing unexplained variability in the data. 

 

Definition 2.5: Quadratic Model in ANOVA: 

A quadratic model in Analysis of Variance is a statistical model used to analyze data when there is a 

curvilinear or quadratic association between the dependent and independent variables. 

The quadratic model can be expressed as: 

Y=β_0+β_1 X+β_2 X^2+ϵ 

where, 

Y refers the dependent variable, the outcome of interest. 

X be the independent variable, the factor under investigation. 
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β_0,β_1 and β_2 are the coefficients that need to be estimated through the ANOVA analysis. 

ϵ denotes the error term, capturing unexplained variation in the data. 

 

Definition 2.5: Linear Model in ANOVA: 

A linear model in Analysis of Variance is a statistical model used to analyze data when there is a linear 

association between the dependent and independent variables. 

The quadratic model can be expressed as: 

Y=β_0+β_1 X+ϵ 

where,  

Y represents the dependent variable, the variable to predict. 

X represents the independent variable, the factor influencing the dependent variable. 

β_0 is the intercept, representing the value of the dependent variable when the independent variable is 

zero. 

β_1  is he slope indicating how much the dependent variable changes for one unit change in the 

independent variable. 

ϵ denotes the error term, capturing unexplained variation in the data. 

 

 Numerical Example 

Illustration: Consider a MCDM problem which contains 5 alternatives (R1, R2, R3, R4, R5) and 5 

criteria (C1, C2, C3, C4 and C5) as shown in Table 1. Predict the dataset which could significantly 

model a cubic / quadratic coded equation with acceptable p-value. The Design expert 13 is used to 

make a custom design to predict and model a coded linear / quadratic equation.   

TABLE 1: INITIAL DECISION MATRIX 

 C1 C2 C3 C4 C5 

R1 649 4.7 326 7.1 143 

R2 749 5.5 401 7.3 192 

R3 740 5.7 520 7.6 171 

R4 400 5.7 520 11.1 179 

R5 600 5.5 538 8.9 152 

 

The custom design admits the cubic model when R1 is maintained as response. The Factor coding is 

Coded (Type III – Partial). The observed F-value of 923510167.11 indicates that the design is 

significant which has only a 0.01% possibility to develop noise. 

TABLE 2: R1 DESIGN FOR CUBIC MODEL 

Source SoS df MS F p 

Model 63326.4 3 21108.80 9.235E+08 < 0.0001 

A-A 57877.30 1 57877.30 2.532E+09 < 0.0001 

A² 1225.41 1 1225.41 5.361E+07 < 0.0001 

A³ 42120.10 1 42120.10 1.843E+09 < 0.0001 

Res. 0.0000 1 0.0000   

Total 63326.41 4    

The Design is Significant. 

    

The design is significant when the observed P-values are less than 0.0500 and not significant on the 

contrary.  
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1st Predicted Equation in Terms of Coded Factors 

R1 = + 646.31 - 457.17 * A - 37.42 * A² + 432.67 * A³ 

 

The above equation is used to make a prediction based on the response R1 of the coded factors against 

each level which also compares the coefficients of the factors and identifies the relative importance of 

the factors at all levels as shown in Table 2 and Table 3. 

TABLE 3: FIRST PREDICTION – R1 

Run Order 1 2 3 4 5 

Original 633.39 811.46 646.31 462.46 584.39 

Predicted 633.39 811.46 646.31 462.46 584.39 

Error -0.0006 0.0023 -0.0034 0.0023 -0.0006 

Advantage 0.986 0.771 0.486 0.771 0.986 

Int. Residuals -1 1 -1 1 -1 

Ext. Residuals 0 0 0 0 0 

Cook's Measure 17.250 0.844 0.236 0.844 17.250 

DFFITS 0 0 0 0 0 

Accepted Order 4 5 3 2 1 

The custom design admits the cubic model when R2 is maintained as response. The Factor coding is 

Coded (Type III – Partial). The observed F-value of 29026.25 indicates that the design is significant 

which has only a 0.01% possibility to develop noise. 

TABLE 4: R2 DESIGN FOR QUADRATIC MODEL 

Source SoS df MS F p 

Model 0.6635 2 0.3317 29026.25 < 0.0001 

A-A 0.3240 1 0.3240 28350.00 < 0.0001 

A² 0.3395 1 0.3395 29702.50 < 0.0001 

Res. 0.0000 2 0.0000   

Total 0.6635 4    

The Design is Significant. 

 

The design is significant when the observed P-values are less than 0.0500 and not significant on the 

contrary.  

2nd Predicted Equation in Terms of Coded Factors 

R2 = +5.73 + 0.3600 * A – 0.6229 * A² 

 

The above equation is used to make a prediction based on the response R2 of the coded factors against 

each level which also compares the coefficients of the factors and identifies the relative importance of 

the factors at all levels as shown in Table 4 and Table 5. 

TABLE 5: SECOND PREDICTION – R2 

Run Order 1 2 3 4 5 

Original 4.75 5.4 5.73 5.76 5.47 
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Predicted 4.75 5.4 5.73 5.76 5.47 

Error -0.0006 0.0023 -0.0034 0.0023 -0.0006 

Advantage 0.886 0.371 0.486 0.371 0.886 

Int. Residuals -0.5 0.853 -1.414 0.853 -0.5 

Ext. Residuals -0.378 0.756 0 0.756 -0.378 

Cook's Measure 0.646 0.143 0.63 0.143 0.646 

DFFITS -1.052 0.581 0 0.581 -1.052 

Accepted Order 4 5 3 2 1 

 

The custom design admits the cubic model when R3 is maintained as response. The Factor coding is 

Coded (Type III – Partial). The observed F-value of 16.91 indicates that the design is significant which 

has only a 2.60% possibility to develop noise. 

TABLE 6: R3 DESIGN FOR LINEAR MODEL 

Source SoS df MS F p 

Model 29484.90 1 29484.90 16.91 0.0260 

A-A 29484.90 1 29484.90 16.91 0.0260 

Res. 5231.10 3 1743.70   

Total 34716.00 4    

The Design is Significant. 

 

The design is significant when the observed P-values are less than 0.0500 and not significant on the 

contrary.  

 

3rd Predicted Equation in Terms of Coded Factors 

R3 = +461.00 + 108.60 * A 

 

The above equation is used to make a prediction based on the response R3 of the coded factors against 

each level which also compares the coefficients of the factors and identifies the relative importance of 

the factors at all levels as shown in Table 6 and Table 7. 

TABLE 7: THIRD PREDICTION – R3 

Run Order 1 2 3 4 5 

Original 326 401 520 520 538 

Predicted 352.4 406.7 461 515.3 569.6 

Error -26.4 -5.7 59 4.7 -31.6 

Advantage 0.6 0.3 0.2 0.3 0.6 

Int. Residuals -1 -0.163 1.58 0.135 -1.197 

Ext. Residuals -0.999 -0.134 3.145 0.11 -1.351 

Cook's Measure 0.749 0.006 0.312 0.004 1.074 
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DFFITS -1.224 -0.088 1.572 0.072 -1.655 

Accepted Order 4 5 3 2 1 

 

The custom design admits the cubic model when R4 is maintained as response. The Factor coding is 

Coded (Type III – Partial). The observed F-value of 371.99 indicates that the design is significant 

which has only a 0.03% possibility to develop noise. 

TABLE 8: R4 DESIGN FOR LINEAR MODEL 

Source SoS df MS F p 

Model 5.87 1 5.87 371.99 0.0003 

A-A 5.87 1 5.87 371.99 0.0003 

Res. 0.0473 3 0.0158   

Total 5.91 4    

The Design is Significant. 

 

The design is significant when the observed P-values are less than 0.0500 and not significant on the 

contrary.  

 

4th Predicted Equation in Terms of Coded Factors 

R4 = +8.45 + 1.53 * A 

 

The above equation is used to make a prediction based on the response R4 of the coded factors against 

each level which also compares the coefficients of the factors and identifies the relative importance of 

the factors at all levels as shown in Table 8 and Table 9. 

TABLE 9: FOURTH PREDICTION – R4 

Run Order 1 2 3 4 5 

Original 6.92 7.66 8.4 9.4 9.88 

Predicted 6.92 7.69 8.45 9.22 9.98 

Error 0 -0.026 -0.052 0.182 -0.104 

Advantage 0.6 0.3 0.2 0.3 0.6 

Int. Residuals 0 -0.247 -0.463 1.732 -1.309 

Ext. Residuals 0 -0.204 -0.392 0 -1.633 

Cook's Measure 0 0.013 0.027 0.643 1.286 

DFFITS 0 -0.134 -0.196 0 -2.000 

Accepted Order 4 5 3 2 1 

 

The custom design admits the cubic model when R5 is maintained as response. The Factor coding is 

Coded (Type III – Partial). The observed F-value of 47387500.00 indicates that the design is significant 

which has only a 0.01% possibility to develop noise. 

TABLE 10: R5 DESIGN FOR QUADRATIC MODEL 

Source SoS df MS F p 

Model 1083.14 2 541.57 4.739E+07 < 0.0001 
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A-A 2.50 1 2.50 2.188E+05 < 0.0001 

A² 1080.64 1 1080.64 9.456E+07 < 0.0001 

Res. 0.0000 2 0.0000   

Total 1083.14 4    

The Design is Significant. 

The design is significant when the observed P-values are less than 0.0500 and not significant on the 

contrary.  

 

5th Predicted Equation in Terms of Coded Factors 

R5 = +184.97 + 1.00 * A – 35.14 * A² 

 

The above equation is used to make a prediction based on the response R5 of the coded factors against 

each level which also compares the coefficients of the factors and identifies the relative importance of 

the factors at all levels as shown in Table 10 and Table 11. Table 12 represents the predictions 

corresponding to each response.  

TABLE 11: FIFTH PREDICTION – R5 

Run Order 1 2 3 4 5 

Original 148.83 175.69 184.97 176.69 150.83 

Predicted 148.83 175.69 184.97 176.69 150.83 

Error -0.0006 0.0023 -0.0034 0.0023 -0.0006 

Advantage 0.886 0.371 0.486 0.371 0.886 

Int. Residuals -0.5 0.853 -1.414 0.853 -0.5 

Ext. Residuals -0.378 0.756 0 0.756 -0.378 

Cook's Measure 0.646 0.143 0.63 0.143 0.646 

DFFITS -1.052 0.581 0 0.581 -1.052 

Accepted Order 4 5 3 2 1 

@Confidence = 95% 

 

TABLE 12: CONFIRMATION ANALYSIS 

Response 
Predicted 

Mean 

Predicted 

Median 
Std Dev n SE Pred 

95% PI 

low 
95% PI high 

R1 646.313 646.31 0.0047 1 0.0058 646.23 646.38 

R2 5.73343 5.73 0.0033 1 0.0041 5.71 5.75 

R3 461 461 41.7576 1 45.7432 315.42 606.57 

R4 8.452 8.45 0.1255 1 0.1375 8.01 8.88 

R5 184.973 184.97 0.0033 1 0.0041 184.95 184.99 

@Confidence = 95% 
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RESULTS AND DISCUSSION 

Response R1: The predicted model for R1 indicated a significant design. The response was modeled 

using a cubic equation, suggesting a complex relationship with the factors. The equation M1 = + 646.31 

- 457.17 * A - 37.42 * A² + 432.67 * A³ provided a predictive framework for R1. This cubic model 

suggests that factor adjustments may lead to non-linear variations in R1, and further analysis may be 

required to understand the nature of this relationship. 

Response R2: The design for R2 was also found to be significant. The response was modeled using a 

quadratic equation, indicating a non-linear relationship with the factors. The equation M2 = +5.73 + 

0.3600 * A – 0.6229 * A² represents the relationship between the factors and R2. This quadratic model 

implies that changes in factors can have a parabolic effect on R2. 

Response R3: R3 was modeled as a linear response, and the design was significant. The equation M3 

= +461.00 + 108.60 * A provided a straightforward linear relationship between the factors and R3. 

This linear model simplifies the understanding of how changes in factors affect R3. 

Response R4: Like R3, R4 exhibited a linear relationship with the factors. The design for R4 was 

significant, and the equation M4 = +8.45 + 1.53 * A described the linear relationship. This simple 

linear model allows for easy interpretation of the influence of factors on R4. 

 
Fig. 1: RAMP graph 

Response R5: The design for R5 was significant, and the response followed a quadratic model. The 

equation M5 = +184.97 + 1.00 * A – 35.14 * A² revealed the non-linear nature of the relationship 

between the factors and R5. Adjusting factors may result in parabolic changes in R5. 

 

The incorporation of ramp graphs (Fig. 1) allows for the visualization of factors and responses across 

their entire range, enabling designers to understand how variables influence outcomes. The clarity 

provided by ramp graphs is instrumental in identifying optimal design settings, potential issues, and 

the boundaries within which a design can perform effectively. 

The use of Design Expert shows the desirability and predictions in optimizing complex interactions 

within a multivariate system yielded promising results. Desirability scores of 0.597 (Fig. 2) suggest 

progress toward desired outcomes. Individual responses (R1 to R5) closely aligned with predictions, 

and their respective models proved significant. The optimization process effectively improved R1, R2, 

R3, R4, and R5, demonstrating the tool's ability to capture complex interactions. 
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Fig. 2: Desirability and Prediction 

 Conclusion 

In this study, we utilized a design expert to optimize responses influenced by five factors. The analysis 

yielded valuable insights into the relationships between the factors and the responses. The results 

indicated that some responses follow linear models, while others exhibit non-linear behavior, either 

cubic or quadratic. These findings provide a basis for further experimentation and refinement of the 

factors to achieve desired outcomes. The significance of the design underlines the effectiveness of the 

approach in optimizing the decision matrix. Understanding these models will support in making 

informed decisions and adjustments to improve the performance of the system or process under 

consideration. 

In conclusion, the analysis presented here provides a foundation for further optimization and control 

of the factors influencing the decision matrix. It projects the importance of a systematic approach in 

decision-making and the utility of mathematical models in understanding complex relationships. This 

study can be used to improve the efficiency and effectiveness of processes or systems in various 

engineering domains to solve any real-world problems 
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